Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells

نویسندگان

  • Wei Xu
  • Zucheng Wu
  • Shanwen Tao
چکیده

Recently mesoporous materials have drawn great attention in fuel cell related applications, such as preparation of polymer electrolyte membranes and catalysts, hydrogen storage and purification. In this mini-review, we focus on recent developments in mesoporous electrocatalysts for polymer electrolyte membrane fuel cells, including metallic and metal-free catalysts for use as either anode or cathode catalysts. Mesoporous Pt-based metals have been synthesized as anode catalysts with improved activity and durability. Mesoporous carbons together with other inorganic materials are better supporting materials than conventional carbon black, which have a large surface area, high porosity and synergistic effect with metal particles. Pt supported on these materials has a small particle size, uniform distribution and good access to fuels, which performs better as fuel cell catalysts than commercial Pt/C. Some efforts such as further improvement in the conductivity and chemical stability of mesoporous carbon by chemical doping are stated. Moreover, metal free cathode catalysts based on heteroatom modified mesoporous carbon are also summarized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesized Bimetallic Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells

In the present study, a step by step process was applied to synthesize bimetallic electrocatalyst (Ru and Pt on VulcanXC-72R). This process can reduce the amount of platinum and increase the gas diffusion electrode (GDE) performance in the cathodic reaction of polymer electrolyte membrane fuel cells (PEMFCs). Using the impregnation by hydrothermal synthesis method, a series of electrocatalysts ...

متن کامل

Numerical analysis of reactant transport in the novel tubular polymer electrolyte membrane fuel cells

In present work, numerical analysis of three novel PEM fuel cells with tubular geometry was conducted. Tree different cross section was considered for PEM, namely: circular, square and triangular. Similar boundary and operational conditions is applied for all the geometries. At first, the obtained polarization curve for basic architecture fuel cells was validated with experimental data and then...

متن کامل

Supported Mixed Metal Nanoparticles and PFA-Nafion Nanocomposite Membrane for Low Temperature Fuel Cells

Performance of low temperature fuel cells depends critically on the nanostructures of the material components in the electrodes and membranes. Some studies are reported here for 1) mixed metal nanoparticles supported on mesoporous carbon and 2) modification of nanopores of Nafion via in-situ polymerization of furfuryl alcohol. The anodic oxidation of small organic molecules such as alcohols in ...

متن کامل

Proton exchange membrane fuel cells with chromium nitride nanocrystals as electrocatalysts

Polymer electrolyte membrane fuel cells (PEMFCs) are energy conversion devices that produce electricity from a supply of fuel, such as hydrogen. One of the major challenges in achieving efficient energy conversion is the development of cost-effective materials that can act as electrocatalysts for PEMFCs. In this letter, we demonstrate that, instead of conventional noble metals, such as platinum...

متن کامل

An overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells

Nowadays, proton exchange membrane fuel cells (PEMFCs) are the most promising green energy conversion devices for portable and stationary applications. Traditionally, these devices were based onperfluoro-sulfonic acid electrolytes membranes, given the commercial name Nafion. Nafion is the mostused electrolyte membrane till now; because of its high electrochemical properties su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016